
CS 250B: Modern Computer Systems

Hardware Acceleration Case Study
Neural Network Accelerators

Sang-Woo Jun

Many slides adapted from
Hyoukjun Kwon‘s Gatech “Designing CNN Accelerators”

Usefulness of Deep Neural Networks

❑ No need to further emphasize the obvious

Convolutional Neural Network for
Image/Video Recognition

ImageNet Top-5 Classification Accuracy
Over the Years

image-net.org “ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2017,” 2017

AlexNet, The Beginning

15 million images 1000 classes in the ImageNet challenge

“The first* fast**
GPU-accelerated Deep Convolutional Neural Network
to win an image recognition contest

Convolutional Neural Networks Overview

C
o

n
vo

lu
ti

o
n

 L
ay

er

Fu
lly

 C
o

n
n

ec
te

d
 L

ay
er

C
o

n
vo

lu
ti

o
n

 L
ay

er

C
o

n
vo

lu
ti

o
n

 L
ay

er

Fu
lly

 C
o

n
n

ec
te

d
 L

ay
er

Fu
lly

 C
o

n
n

ec
te

d
 L

ay
er

goldfish: 0.002%

shark: 0.08%

magpie: 0. 02%

Palace: 89%

…
…

Paper towel: 1.4%

Spatula: 0.001%

…

… …

“Convolution” “Neural Network”

…

Training vs. Inference

❑ Training: Tuning parameters using training data
o Backpropagation using stochastic gradient descent is the most popular algorithm

o Training in data centers and distributing trained data is a common model*

o Because training algorithm changes rapidly, GPU cluster is the most popular
hardware (Low demand for application-specific accelerators)

❑ Inference: Determining class of a new input data
o Using a trained model, determine class of a new input data

o Inference usually occurs close to clients

o Low-latency and power-efficiency is required
(High demand for application specific accelerators)

Deep Neural Networks (“Fully Connected”*)

Chris Edwards, “Deep Learning Hunts for Signals Among the Noise,” Communications of the ACM, June 2018

❑ Each layer may have a different number of neurons

goldfish: 0.002%

Palace: 89%

Paper towel: 1.4%

Spatula: 0.001%

An Artificial Neuron

❑ Effectively weight vector multiplied
by input vector to obtain a scalar

❑ May apply activation function to
output
o Adds non-linearity

Sigmoid Rectified Linear Unit
(ReLU)

Jed Fox, “Neural Networks 101,” 2017

Convolution Layer

31 7 44

65 35 40

46 29 32

33

46

30

24 49 8 64

65 46

46 64

Convolution layer Optional pooling layer

Convolution Example

1 2 3

-2 0 -1

5 -2 4

Channel partial sum[0][0] =

 1 x 0 + 2 x 1 + 3 x 0

+ (-2) x 2 + 0 x 4 + (-1) x 3

+ 5 x 5 + (-2) x 2 + 4 x 7

= 44

440 1 0

2 4 3

5 2 7

1 0 1

1 0 0

2 1 5

4 1 8

5 0 1

0 0 0

4 2 8

5 8 3

5 2 6 Channel partial sum[0][0] =

 1 x 0 + 2 x 1 + 3 x 0

+ (-2) x 2 + 0 x 4 + (-1) x 3

+ 5 x 5 + (-2) x 2 + 4 x 7

= 44

44 -1

Typically adds zero padding to source matrix
to maintain dimensions

Convolution
Filter

Input map Output map

× =

Multidimensional Convolution

❑ “Feature Map” usually has multiple layers
o An image has R, G, B layers, or “channels”

❑ One layer has many convolution filters, which create a multichannel
output map

1 2 3

-2 0 -1

5 -2 4

Input feature map 3x3x3 filter

×

Output feature map

=

Multiple Convolutions

Filter 0

Filter 1

Input feature map

Output feature map 0

Output feature map 1

Example Learned Convolution Filters

Alex Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks,” NIPS, 2012

Multidimensional Convolution

Image found online. Original source unknown

Computation in the Convolution Layer

for(n=0; n<N; n++) { // Input feature maps (IFMaps)
 for(m=0; m<M; m++) { // Weight Filters
 for(c=0; c<C; c++) { // IFMap/Weight Channels
 for(y=0; y<H; y++) { // Input feature map row
 for(x=0; x<H; x++) { // Input feature map column
 for(j=0; j<R; j++) { // Weight filter row
 for(i=0; i<R; i++) { // Weight filter column
 O[n][m][x][y] += W[m][c][i][j] * I[n][c][y+j][x+i]}}}}}}}

Pooling Layer

❑ Reduces size of the feature map
o Max pooling, Average pooling, …

31 7 44

65 35 40

46 29 32

33

46

30

24 49 8 64

65 46

46 64

Max pooling example

Real Convolutional Neural Network
-- AlexNet

Alex Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks,” NIPS, 2012

96 11x11x3 kernels 256 5x5x48 384 3x3x128 …

Simplified intuition: Higher order information at later layer

Real Convolutional Neural Network
-- VGG 16

Heuritech blog (https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/)

Contains 138 million weights and
15.5G MACs to process one 224 × 224 input image

There are Many, Many Neural Networks

❑ GoogLeNet, ResNet, YOLO, …
o Share common building blocks, but look drastically different

GoogLeNet (ImageNet 2014 winner)

ResNet
(ImageNet 2015 winner)

Beware/Disclaimer on Accelerators

❑ This field is advancing very quickly/messy right now

❑ Lots of papers/implementations always beating each other, with
seemingly contradicting results
o Eyes wide open!

The Need For Neural Network Accelerators

❑ Remember: “VGG-16 requires 138 million weights and 15.5G MACs to
process one 224 × 224 input image”
o CPU at 3 GHz, 1 IPC, (3 Giga Operations Per Second – GOPS): 5+ seconds per image

o Also significant power consumption!
• (Optimistically assuming 3 GOPS/thread at 8 threads using 100 W, 0.24 GOPS/W)

Farabet et. al., “NeuFlow: A Runtime Reconfigurable Dataflow Processor for Vision”

* Old data (2011), and performance
varies greatly by implementation, some
reporting 3+ GOPS/thread on an i7
Trend is still mostly true!

Two Major Layers

❑ Convolution Layer
o Many small (1x1, 3x3, 11x11, …) filters

• Small number of weights per filter, relatively small number in total vs. FC

o Over 90% of the MAC operations in a typical model

❑ Fully-Connected Layer
o N-to-N connection between all neurons, large number of weights

* = =×

Input map Output mapFilters Input
vector

Weights Output
vector

FC:Conv:

Systolic Array Design for Convolutions

Row buffer

Row buffer

Row buffer

+

Input

Convolved feature map
0 for padding

Very efficient design!

BUT BRITTLE! Above design only works for 3x3 conv
and not for FC (Resource fragmentation!)

Spatial Mapping of General-Purpose
Compute Units

Memory
❑ Map both convolutions and FC to matrix

multiplications

❑ Typically a 2D matrix of Processing Elements
o Each PE is a simple multiply-accumulator

o Extremely large number of PEs

o Very high peak throughput!

❑ Is memory the bottleneck (Again)?

Processing Element

Memory Access is (Typically) the Bottleneck
(Again)

❑ 100 GOPS requires over 300 Billion weight/activation accesses
o Assuming 4 byte floats, 1.2 TB/s of memory accesses

❑ AlexNet requires 724 Million MACs to process a 227 x 227 image, over 2
Billion weight/activation accesses
o Assuming 4 byte floats, that is over 8 GB of weight accesses per image

o 240 GB/s to hit 30 frames per second

❑ An interesting question:
o Can CPUs achieve this kind of performance?

o With SIMD and good caching, YES!, but not at low power

“About 35% of cycles are spent waiting for weights to load from
memory into the matrix unit …” – Jouppi et. al., Google TPU

Spatial Mapping of Compute Units 2

Memory
❑ Optimization 1: On-chip network moves

data (weights/activations/output) between
PEs and memory for reuse

❑ Optimization 2: Small, local memory on
each PE
o Typically using a Register File, a special type of

memory with zero-cycle latency, but at high
spatial overhead

❑ Cache invalidation/work assignment… how?
o Computation is very regular and predictable

Processing Element

Register file A class of accelerators deal only with problems that fit entirely in
on-chip memory. This distinction is important.

Different Strategies of Data Reuse

❑ Weight Stationary
o Try to maximize local weight reuse

❑ Output Stationary
o Try to maximize local partial sum reuse

❑ Row Stationary
o Try to maximize inter-PE data reuse of all kinds

❑ No Local Reuse
o Single/few global on-chip buffer, no per-PE register file and its space/power

overhead

Terminology from Sze et. al., “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE 2017

Weight Stationary

❑ Keep weights cached in PE register files
o Effective for convolution especially if all weights can fit in PEs

❑ Each activation is broadcast to all PEs, and computed partial sum is
forwarded to other PEs to complete computation
o Intuition: Each PE is working on an adjacent position of an input row

Weight stationary convolution for a row in the convolution

Partial sum of a previous
activation row if any Partial sum for stored for

next activation row, or
final sum

nn-X, nuFlow, and others

Output Stationary

❑ Keep partial sums cached on PEs – Work on subset of output at a time
o Effective for FC layers, where each output depend on many input/weights

o Also for convolution layers when it has too many layers

❑ Each weight is broadcast to all PEs, and input relayed to neighboring PEs
o Intuition: Each PE is working on an adjacent position in an output sub-space

=×

Input
vector

Weights Output
vector

cached

ShiDianNao, and others

Row Stationary

❑ Keep as much related to the same filter row cached… Across PEs
o Filter weights, input, output…

❑ Not much reuse in a PE
o Weight stationary if filter row

fits in register file

Eyeriss, and others

Row Stationary

❑ Lots of reuse across different PEs
o Filter row reused horizontally

o Input row reused diagonally

o Partial sum reused vertically

❑ Even further reuse by
interleaving multiple input
channels and multiple filters

No Local Reuse

❑ While in-PE register files are fast and power-efficient, they are not space
efficient

❑ Instead of distributed register files, use the space to build a much larger
global buffer, and read/write everything from there

Google TPU, and others

Google TPU Architecture (v1 for simplicity)

Static Resource Mapping

Sze et. al., “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE 2017

Map And Fold For Efficient Use of Hardware

Sze et. al., “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE 2017

Requires a flexible on-chip network

Overhead of Network-on-Chip Architectures

Mesh

Crossbar Switch
Bus

Throughput

PE

Eyeriss
PE

Power Efficiency Comparisons

❑ Any of the presented architectures reduce memory pressure enough that
memory access is no longer the dominant bottleneck
o Now what’s important is the power efficiency

Goal becomes to reduce as much DRAM access as possible!

Joel Emer et. al., “Hardware Architectures for Deep Neural Networks,” tutorial from ISCA 2017

Power Efficiency Comparisons

Sze et. al., “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE 2017

* Some papers report different numbers [1]
where NLR with a carefully designed global
on-chip memory hierarchy is superior.
[1] Yang et. al., “DNN Dataflow Choice Is
Overrated,” ArXiv 2018

Power Consumption Comparison Between
Convolution and FC Layers

Sze et. al., “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE 2017

❑ Data reuse in FC in
inherently low
o Unless we have enough on-

chip buffers to keep all
weights, systems methods
are not going to be enough

Next: Model Compression

	Slide 1: CS 250B: Modern Computer Systems Hardware Acceleration Case Study Neural Network Accelerators
	Slide 2: Usefulness of Deep Neural Networks
	Slide 3: Convolutional Neural Network for Image/Video Recognition
	Slide 4: ImageNet Top-5 Classification Accuracy Over the Years
	Slide 5: Convolutional Neural Networks Overview
	Slide 6: Training vs. Inference
	Slide 7: Deep Neural Networks (“Fully Connected”*)
	Slide 8: An Artificial Neuron
	Slide 9: Convolution Layer
	Slide 10: Convolution Example
	Slide 11: Multidimensional Convolution
	Slide 12: Multiple Convolutions
	Slide 13: Example Learned Convolution Filters
	Slide 14: Multidimensional Convolution
	Slide 15: Computation in the Convolution Layer
	Slide 16: Pooling Layer
	Slide 17: Real Convolutional Neural Network -- AlexNet
	Slide 18: Real Convolutional Neural Network -- VGG 16
	Slide 19: There are Many, Many Neural Networks
	Slide 20: Beware/Disclaimer on Accelerators
	Slide 21: The Need For Neural Network Accelerators
	Slide 22: Two Major Layers
	Slide 23: Systolic Array Design for Convolutions
	Slide 24: Spatial Mapping of General-Purpose Compute Units
	Slide 25: Memory Access is (Typically) the Bottleneck (Again)
	Slide 26: Spatial Mapping of Compute Units 2
	Slide 27: Different Strategies of Data Reuse
	Slide 28: Weight Stationary
	Slide 29: Output Stationary
	Slide 30: Row Stationary
	Slide 31: Row Stationary
	Slide 32: No Local Reuse
	Slide 33: Google TPU Architecture (v1 for simplicity)
	Slide 34: Static Resource Mapping
	Slide 35: Map And Fold For Efficient Use of Hardware
	Slide 36: Overhead of Network-on-Chip Architectures
	Slide 37: Power Efficiency Comparisons
	Slide 38: Power Efficiency Comparisons
	Slide 39: Power Consumption Comparison Between Convolution and FC Layers
	Slide 40: Next: Model Compression

